Performance Tuning Is Hard And That Is Why You Should Do It A STATISTICS OF A STATISTICS O

-

-__

Oracle Linux and Virtualization Engineering

Multicore World 2024 Christchurch, New Zealand, February 12-16, 2024

> 0 0 0 0 0 0 0 0

Ruud van der Pas Senior Principal Software Engineer

The Talk

- Why Talking about Performance?
- The Impact of AI
- Deep in the Dungeon
- Repeating Myself

Q and (some) A

15:55 - 16:26

16:27 - 16:30

Performance Tuning Is Hard And That Is Why You Should Do It

Summary - For the Impatient

Benefits of improving the application performance:

- Save money
- Much better understanding of your resource requirements
- Educate your developers to write efficient code from day 1

Get your application performance expert today!

Performance Tuning Is Hard And That Is Why You Should Do It

Reduce product development time and/or quality of the product

Why Talking about Performance?

Performance Tuning Is Hard And That Is Why You Should Do It

Myths - Greatest Hits

Performance Tuning Is Hard And That Is Why You Should Do It

"Compilers are so smart by now, they will fix my inefficient code"

"Compilers have no clue, so I need to do all the low level tuning"

"It is cheaper to just buy a faster processor"

"We will do the performance tuning when we're done with the code"

"Al can do the performance tuning for us"

"That is all fine and good, but it is too expensive to do"

"Sure. Let's do some basic calculus."

Performance Tuning Is Hard And That Is Why You Should Do It

Basic Calculus

c7g.4xlarge* **vCPU** Memory Cost/hour (\$US) Cost/year (\$US) Salary Performance Geek (\$U

*) Compute Optimized, 7-th instance generation, processor family "g" (AWS Graviton) - lowest cost in this class

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#instance-type-names https://aws.amazon.com/ec2/pricing/on-demand/

Performance Tuning Is Hard And That Is Why You Should Do It

USA (North California)				
	16			
	32 GB			
	0.7208			
	6314			
5)	150K			

And the Winner is ...

Number of vCPUs

>	90K \$US	
>	50K \$US	
>	10K \$US	

Performance Tuning Is Hard And That Is Why You Should Do It

The Impact of Always Incorrect Al

Performance Tuning Is Hard And That Is Why You Should Do It

The Challenge in Performance Tuning

What Is The Reference?

Is What You Observe "Normal"?

Performance Tuning Is Hard And That Is Why You Should Do It

Challenge: What is Normal?

Displacement Ground

Performance Tuning Is Hard And That Is Why You Should Do It

MulticoreWorldXI You Probably Want to See Outliers Here Though

Performance Tuning Is Hard And That Is Why You Should Do It

Common Relatively Simple Architectures

Performance Tuning Is Hard And That Is Why You Should Do It

A Typical System

Performance Tuning Is Hard And That Is Why You Should Do It

Performance Tuning Is Hard And That Is Why You Should Do It

How Hardware Threads Work

No hardware threads

Two hardware threads

Time

Performance Tuning Is Hard And That Is Why You Should Do It

NUMA - The System Most of Us Use Today

A Generic, but very Common and Contemporary NUMA System

Performance Tuning Is Hard And That Is Why You Should Do It

A Hybrid Multi-Level Parallel System **Distributed Memory** Standard Network Shared Memory ••

Performance Tuning Is Hard And That Is Why You Should Do It

"But these are very complex systems I don't use"

"Let's look at a laptop. Do you think that is any easier?"

Performance Tuning Is Hard And That Is Why You Should Do It

An Example - The Apple M2 Pro Processor

Performance Tuning Is Hard And That Is Why You Should Do It

"And You Honestly Think AI Can Master These Kinds Of Beasts?"

"Yes! AI Can Be Trained To Do This!"

"Sure. Let me know when it is ready."

Performance Tuning Is Hard And That Is Why You Should Do It

Deep in the Dungeon

Performance Tuning Is Hard And That Is Why You Should Do It

We Have These Extremely Large Parallel Systems

Won't that give us unlimited performance?

Performance Tuning Is Hard And That Is Why You Should Do It

About Single Thread Performance

Why Is This Still So Important?

We're All In Nicolás's Multicore World Universe After All ;-)

Performance Tuning Is Hard And That Is Why You Should Do It

Amdahl's Law*

This means that your program is 2.5x faster, not 4x

*) No, this is not another EU legislation on the maximum noise of a vacuum cleaner. It is actually relevant.

Performance Tuning Is Hard And That Is Why You Should Do It

Suppose your application needs 100 seconds to run

If 80% of this run time can execute in parallel, the time using 4 threads is 80/4+20 = 40 seconds

Amdahl's Law Using 16 Threads

Performance Tuning Is Hard And That Is Why You Should Do It

A Simple Tuning Example

Performance Tuning Is Hard And That Is Why You Should Do It

An Example from Graph Analysis

Structure of the code:

- Generate an undirected graph of the specified size
- Randomly select a key and conduct a BFS search -
- Verify the result is a tree

For the benchmark score, only the search time matters

Performance Tuning Is Hard And That Is Why You Should Do It

The OpenMP reference version of the Graph 500 benchmark

Repeat

The Dynamic Behaviour

Performance Tuning Is Hard And That Is Why You Should Do It

The Scalability is Disappointing

System: A VM with 8 Intel Xeon Platinum 8167M CPU @ 2.00GHz ("Skylake") cores, 16 hardware threads

Performance Tuning Is Hard And That Is Why You Should Do It

Used the gprofng profiling tool to find the time consuming parts

Found several opportunities to improve the OpenMP part

Although simple changes, the improvement is substantial:

Performance Tuning Is Hard And That Is Why You Should Do It

Performance Tuning Is Hard And That Is Why You Should Do It

The KEY Question Are We Done Tuning This Code?

Performance Tuning Is Hard And That Is Why You Should Do It

A Comparison Between 1 And 2 Threads

Note: The GNU gprofng profiling tool was used to create this view (https://sourceware.org/binutils)

	Fi <u>n</u> d: Find t	ext in view	<u> </u>	Mat <u>c</u> h Case			
Data by: Thread 💌	·			<.			
900	1,000	1,100 1	,200 1,300				
			Bot fror	h ph n us	nase ing	es benefit 2 threads	
	Fast	er					
צי דע	צי צי דע צי דע צע צע צע צע דע דע		アナナナナナナナナナナナ	~~~~~			
						Search	

Performance Tuning Is Hard And That Is Why You Should Do It

Zoom In On The Second Thread

Note: The GNU gprofng profiling tool was used to create this view (https://sourceware.org/binutils)

Performance Tuning Is Hard And That Is Why You Should Do It

How About 4 Threads?

Note: The GNU gprofng profiling tool was used to create this view (https://sourceware.org/binutils)

Performance Tuning Is Hard And That Is Why You Should Do It

Zoom In Some More

Performance Tuning Is Hard And That Is Why You Should Do It

CPU Time Variations CPU Time Distrib

U	t	0	n	

nreads	Ratio CPl	Max/Min U Times				
2		1.36				
4	1.63					
8	1.91					
56 156	150 150	0 148 148				
8 threads						

The load imbalance increases as the thread count goes up

Note: Data obtained with the GNU gprofng profiling tool (https://sourceware.org/binutils)

Performance Tuning Is Hard And That Is Why You Should Do It

Performance Tuning Is Hard And That Is Why You Should Do It

Observations and the Solution

The *#pragma omp for loop uses default scheduling*

In this case, that leads to load balancing issues

The solution: **#pragma omp for schedule(dynamic)**

Or an even better solution: *#pragma omp for schedule(runtime)*

Our setting: \$ export OMP_SCHEDULE="dynamic,25"

Performance Tuning Is Hard And That Is Why You Should Do It

The default is implementation dependent, but is static here

How Do You Know The Chunk Size Should Be 25?

Trial And Error

Devil's Advocate: Can AI realize this and do such things?

Performance Tuning Is Hard And That Is Why You Should Do It

The modified version is 3x faster than the original code

Performance Tuning Is Hard And That Is Why You Should Do It

The Load Imbalance is Indeed Really Gone

Performance Tuning Is Hard And That Is Why You Should Do It

Repeating Myself

Performance Tuning Is Hard And That Is Why You Should Do It

Summary - For the Patient

Benefits of improving the application performance:

- Save money
- Much better understanding of your resource requirements
- Educate your developers to write efficient code from day 1

Get your application performance expert today!

Performance Tuning Is Hard And That Is Why You Should Do It

Reduce product development time and/or quality of the product

"By the way, any progress with your Al efforts?"

"Still working on it."

"Sure. Let me know when it is ready."

Performance Tuning Is Hard And That Is Why You Should Do It

Thank You And ... Stay Tuned!

ruud.vanderpas@oracle.com

