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Large-scale Experimental Facilities
Relativistic Heavy Ion Collider (RHIC): Supports more than 1000 scientists 

worldwide
National Synchrotron Light Source II (NSLS-II): Newest and brightest 

synchrotron in the world; supports a multitude of scientific research in 
academia, industry, and national security

Center for Functional Nanomaterials (CFN): Combines theory and 
experiment to probe materials

Accelerator Test Facility (ATF)
Large Hadron Collider (LHC) ATLAS: Largest Tier-1 center outside of CERN
Atmospheric Radiation Measurement (ARM) program: Partner in multi-site 

facility, operating its external data center
Belle II: Tier 0 computing for neutrino experiment
Quantum chromodynamics (QCD) computing facilities for Brookhaven Lab, 

RIKEN, and U.S. QCD communities

ATLAS

QCD

CFN

NSLS-II

RHIC
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Brookhaven Lab Data by the Numbers
One of the top-10 scientific archives in the world*

• ~230 PB of data archived (exabytes by 2026)
• 26 million files injected (30 PB)
• 21 million files restored (34 PB)

1.4 EB of data analyzed

200 PB of data transferred
• Data import: 90 PB
• Data export: 110 PB

1,900 active accounts

*Source: http://www.hpss-collaboration.org/customersT.shtml

2022 Statistics
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Performance Prediction Methods: Speed versus 
Accuracy
Smart Modeling and Simulation for HPC (SMaSH) is an intricate challenge 

because of the complexity of the design space.
Methodologies exist that lack either practicality or accuracy.

Discrete event (DE) simulation is slow:
• For example, gem5 simulates a modern microprocessor at several hundreds of 

KIPS.
• Not practical for realistic architectures and workloads.

Speed Accuracy Flexibility
Analytical Methodologies Fast Low Low

Emulation Fast High (?) Very low

Discrete Event Simulation Slow High High

Machine Learning (ML)-based 
Simulation Medium; aiming high High Medium; aiming high
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Pathway to Solutions is Complicated
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The Vision: Ubiquitous Modeling
• Performance, Power and 

Reliability
• Together!

• Bag-of-tools approach  
• Not one for all, but all for one. 
• Modeling, simulation, and emulation.

• Lifecycle coverage 
• HW-SW
• From design space exploration to 

analysis of early implementation to 
deployment to runtime optimizations

• Co-design
• Modeling needs to be applied to 

negotiate trade-offs at all boundaries 
of the HW-SW stack.

• Dynamic Modeling 
• Complexity of systems renders 

static/offline modeling insufficient
• Introspective Runtime

• Dynamic HW-SW; rapid 
optimizations 

• Runtime system as model driven, 
and the model as actionable.



ModSim is the Quantitative Set of 
Codesign Methodologies
Essentially a multi-objective, non-convex optimization problem.
Bridges spectrum of scales, from devices/sensors to integrated systems 

to complex workflows
Need for dynamic modeling/codesign
ML-based capability for ModSim

• Developed for the complex workflows of experimental science
• Extraordinary data challenges, combined with control, real time optimizations, 

introspection
• Dynamic simulations of complex environments comprised of socio and physical 

components 
• Many technical challenges of DHS lend themselves to a dynamic codesign 

approach  codesign – framework/foundation for digital twins
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Challenges for System and Application 
Design
• Multiple constraints

• Optimal performance
• Power constraints
• Reliability

• Adaptivity: vast numbers of “knobs” to 
deal with

• Applications – data driven
• Systems -- heterogeneous

• Complexity of the system software 
stack–dynamic behavior

• Models in runtime
• Actionable models
• Guiding runtime optimizations and 

operation

• Complexity of the architecture and 
associated technologies

• Need to leverage marketplace
• Extreme-scale system are increasingly  

emerging as a synthesis of technologies 
• Leverage commoditization but adds 

specific smarts
• Modeling is called to capture multiple 

boundaries of the hardware-software 
(HW-SW) stack

• Applications must cope with and help 
mitigate the increased complexity 

• Triggers the need for modeling now, 
wide-spread exploration of future 
applications and technologies



Why doing ML-based Simulation
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• ML models, especially deep neural networks, have been proven to be 
excellent function approximators 
• Can expect they can be applied to approximate the complex and 

implicit latency calculations that are essential to computer architecture 
simulation

• ML is in widespread use from computer vision to scientific computing – 
a lot to learn from

• ML-based simulation is more flexible compared with ML-based analytical 
modeling because it does not require training per program/input. 

• ML-based simulator could bring performance advantages –inference is 
highly parallel, and state-of-the-art accelerators and software 
infrastructures are well optimized for such tasks.



ML-based Simulation Foundation
Goal: predict instruction latencies.
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Instruction Latency Prediction
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*CNN: convolutional neural network
LSTM: Long short-term memory 



Specialized Neural Networks for Architecture 
Simulation

16

• We organize input instructions in a 1D array by their execution order -- features are channels 
• We organize the convolutional layers in a hierarchical way
• A classification  model could help to better distinguish between close latency values, where every 

latency value corresponds to a class, 
• ML model predicts which class has the largest probability.



General Performance ModSim
• A general performance ModSim tool should separate the impact 

of program and microarchitecture
• When one party changes, no need to re-model/simulate the other

• Basic idea: isolate the performance impact of program and 
microarchitecture using separate ML models
• Program and microarchitecture representations are general and reusable.
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Representation-based Performance 
Modeling
Basic idea: separate the impact of program and microarchitecture in the ML 
model architecture; learn general and reusable program and microarchitecture 
representations.

Program features need to be microarchitecture-independent:
• Convention features, such as operation types; register indices
• To capture cache performance: use reuse-distance as features
• To capture branch prediction performance: use branch entropy as features



Design Space Use Case Scenario
Representation-based modeling is broadly applicable in many use cases.
Example: L1 and L2 cache size exploration to minimize the objective function

• Objective function: execution_time * (1000 + 10*L1_size + L2_size)
• Select the best cache sizes for 17 SPEC benchmarks

Time overhead to finish this design space exploration
• Our method: 5 hours of gem5 simulation + 6 hours of model training
• gem5 simulation: 600 hours
• Previous ML-based performance models: 200 hours of gem5 simulation

Objective function values under various cache sizes
• Our method selects the top 3.6% designs on average

ARM Cortex-A7



Codesign is not merely static mapping of hardware (HW) onto 
software (SW), but a dynamic, data-driven process.

• Vital for now dominant data-driven workloads and heterogenous 
architectures

Ability to find new placements or mappings on the fly 
is needed.

In this regime, experimental HW, application SW, 
and other devices (e.g., storage) are all coupled 
through feedback loops.

• Rational, quantitative ways to reconfigure components while 
experiments are conducted.

• Gather training data from actual experimental and SW 
configurations.

• Use ML models to predict optimal actions and knob settings 
for a dynamic codesign engine.

• Train the intelligent runtime using reinforcement learning.

Dynamic 
codesign 

engine

Experimental 
hardware

Networking 
subsystem

Storage 
devices

Compute 
accelerators

Application 
layer

Dynamic Codesign
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Workflows du Jour: Microscopy, …



Accelerator Detector Workflow
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Optical BW: 20Tbps
Expect 10% usage 

PCIe BW: 5Tbps
Expect 5% usage 

Network BW: 1.5Tbps
Expect 10% usage 

Buffer: ~7PB
 Few days of buffer

ADCs: O(100)Tbps
Expect 100% usage 

O(10k)x ASIC: zero suppression

Tape for perm. storage 
+

Fixed latency (2wk) offline reco. 

Online Buffer: 1.2PB x6

38x Dual-EPYC7352 servers: compression, buffer

38x FELIX Interface: trigger throttling, buffer

• Next-generation collider experiment: sPHENIX starts data-taking in 2023
• Streaming DAQ at 2Tbps readout also applicable to future electron-ion collider (EIC)
• Opportunities for real-time high-throughput noise-rejection, anomaly detection monitoring, 

and reconstruction





• How to automatically map a 
numerical algorithm onto 
available hardware resources?

• Example: In machine learning, 
map a deep neural network onto 
a system of GPUs/CPUs to 
optimize training time.

Neural Nets for Device Placement
• Combinatorial optimization 

problem
• N operations, D devices →  DN

possible mappings.



Beyond Static Codesign Approaches
• Promising work on optimizing ML 

workloads 
• Device placement: how to place 

elements of a computation graph 
onto available accelerator cores

• Resizing neural nets: How to trade 
off accuracy for model size.

• However, dynamic approaches are 
needed:

• Different parts of an experiment 
call for disparate imaging settings 
(impacting data resolution/rate)

• Algorithm settings change (e.g., 
required accuracy)

• Shifting demands may require 
different HW-SW mappings for 
optimal performance Top: Device Placement Optimization with Reinforcement Learning. Mirhoseini et al. (2017)

Bottom: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Tan and Le (2019)
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REDWOOD: ML-based Optimization of Complex Experimental 
Science Workflows for Distributed Resilience
Overarching goals:
• Dynamic modeling (these methods can quantitatively capture dynamic and adaptive workflow 

and system behavior at runtime)
• Complex high-throughput (HT) and NRT workflows resilience
• Optimal data placement and resources utilization

ModSim specific:
• Optimize the resilience of the workflows by intelligently placing the data and processing 

across the distributed resources. 
• Develop an intelligent, introspective, and dynamic workflow by drawing on a system model 

based on years of data captured from a large-scale production system. It will offer control and 
management capabilities required at all timescales—from NRT to delivery of scientific insight.

• Flexible resource provisioning
• Dynamic resource management
• Multi-dimensional scheduling optimization

26



Optimal Experimental Design (OED)
Fundamentals of an OED framework

• Models and experiments are inherently 
uncertain: theoretical approximations, 
experimental errors, imperfect information, 
etc.

• Experiments are pointwise, costly, and 
time consuming

• Design experiments systematically to 
yield the highest amount of insight from 
each experiment

• Make design decisions under uncertainty
• Demonstrated in drug discovery, 

superconducting quantum circuits, etc.
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Summary
ML-based methods and tools for performance, power, and reliability 

hold  great promise to advance the state-of-the-art in ModSim
Offer a flexible framework for codesign of complex (socio-)technical 

systems
Have direct applicability to challenges in the science and other 

mission spaces
Quantitative tool of codesign – framework for digital twins
From characterization to design to actionable capabilities
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